skip to main content


Search for: All records

Creators/Authors contains: "Cook, B. I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    California’s water resources rely heavily on cool‐season (November–March) precipitation in the Sierra Nevada. Interannual variability is highly volatile and seasonal forecasting has little to no skill, making water management particularly challenging. Over 1902–2020, Sierra Nevada cool‐season precipitation totals exhibited significant 2.2‐ and 13–15‐year cycles, accounting for approximately 40% of total variability and perhaps signifying potential as seasonal forecasting tools. However, the underlying climate dynamics are not well understood and it is unclear whether these cycles are stable over the long term. We use tree rings to reconstruct Sierra Nevada cool‐season precipitation back to 1400. The reconstruction is skillful, accounting for 55%–74% of observed variability and capturing the 20th‐century 2.2‐ and 13–15‐year cycles. Prior to 1900, the reconstruction indicates no other century‐long periods of significant spectral power in the 2.2‐ or 13–15‐year bands. The reconstruction does indicate significant cyclicity over other extended periods of several decades or longer, however, with dominant periodicities in the ranges of 2.1–2.7 and 3.5–8 years. The late 1700s through 1800s exhibited the highest‐amplitude cycles in the reconstruction, with periodicities of 2.4 and 5.7–7.4 years. The reconstruction should serve to caution against extrapolating the observed 2.2‐ and 13–15‐year cycles to guide future expectations. On the other hand, observations and the reconstruction suggest that interannual variability of Sierra Nevada cool‐season precipitation is not a purely white noise process and research should aim to diagnose the dynamical drivers of extended periods of cyclicity in this critical natural resource.

     
    more » « less
  2. Abstract

    To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1 C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses.

     
    more » « less